Fertiliser formulation for the reduction of gaseous emissions

Patrick Forrestal, Mary Harty, Leanne Roche, Dominika Krol, David Wall, Orlaith Ni Chonchubhair, Karl Richards, Gary Lanigan
Teagasc, Johnstown Castle Environment Research Centre, Wexford, Ireland

Rachael Carolan, Karen McGeough, Ronnie Laughlin, Catherine Watson
Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, N. Ireland
Fertiliser nitrogen (N) affects gaseous N emissions

Greenhouse gas (GHG)

Nitrous oxide (N$_2$O)
 1. How much are we losing?
 2. What can we do about it?

Gaseous N air pollutant

Ammonia (NH$_3$)
 1. How much are we losing?
 2. What can we do about it?
1. How much are we losing?
2. What can we do about it?
3. What is the impact on yield and efficiency?

Grassland
6 site-years
Annual N rates 0 – 500 kg/ha
Suite of fertiliser N formulations

Spring barley
8 site-years
Annual N rates 0 – 200 kg/ha
Suite of fertiliser N formulations
1. How much are we losing?

The main N formulations currently used:

- **Urea fertiliser**: 100%
- **Ammonium fertiliser**: 50:50
- **Nitrate fertiliser**
Nitrate links to loss of the GHG N$_2$O

Soil NO$_3$-N (mg kg$^{-1}$)

N$_2$O-N (g ha$^{-1}$ d$^{-1}$)

05/03/2013 05/04/2013 05/05/2013 05/06/2013 05/07/2013 05/08/2013 05/09/2013 05/10/2013
Stabilising fertiliser N

Urease inhibition:
Moderates the rate of urea hydrolysis reducing loss of the gaseous air pollutant NH$_3$.

Nitrification inhibition:
Moderates the rate of NH$_4^+$ nitrification reducing NO$_3^-$ related losses such as the greenhouse gas N$_2$O.
Urease inhibition

N-(n-butyl) thiophosphoric triamide (NBPT)

- Most widely used globally (Chien *et al.*, 2009)
- Active ingredient is off patent
- Koch hold patents on AGROTAIN® formulation
- Urea + AGROTAIN® is marketed in Ireland as Koch advanced Nitrogen (KaN) 660 ppm NBPT
- It is this formulation of NBPT which was tested in the current work

AFBI and Teagasc’s use of a commercial product in this research does not imply any endorsement or warranty of any quality for any specific purpose, of such a product.
NBPT

- Ammonia loss is a relatively fast process => activity needed for a relatively short period
- Short half-life: 0.59 day at pH 6.1 (Engel et al., 2015)
- Low loading to environment @ 200 kg N/ha/yr = 287 g NBPT/ha/yr
- Targeted delivery on fertiliser granule
- Research on NBPT in Ireland going back to the 1980’s (e.g. Watson et al., 1990)
Nitrification inhibition
Dicyandiamide (DCD)

- Nitrification is occurring continually => longer action needed
- DCD average half-life of 37 days at 15 °C (McGeough et al., 2016)
- @ 200 kg N/ha/yr = 7 kg DCD/ha/yr
- Targeted delivery incorporated into the fertiliser granule
- Not commercially available in Ireland
- Been around for many years:
 - Fox and Bandel (1989) evaluated yield response throughout 1980’s in Maryland and Pennsylvania
Fertiliser formulations tested and presented today

- CAN
- Urea
- Urea + NBPT
- Urea + NBPT + DCD
- Urea + DCD
Forrestal, P.J. 2016
Are there Ammonia gas loss differences between fertilisers?

- Yes: urea > CAN
- Urea + NBPT ≈ CAN

![Graph showing ammonia gas loss differences between fertilisers.](image)

Based in Misselbrook et al., 2004; Forrestal et al., 2016; Kim et al., 2012
The percentage of N fertiliser lost as N\textsubscript{2}O is known as the emission factor (EF).
Grassland: Urea + NBPT reduces direct N_2O compared to CAN

On average a 73% reduction in direct N_2O EF using urea+NBPT

Adapted from Harty et al. (2016)
Spring barley: direct N_2O losses lower than the default

Adapted from Roche et al. (in review)
Forrestal, P.J. 2016
Grassland: CAN N₂O loss is more than previously thought urea + NBPT reduces fertiliser N₂O loss

IPCC default 1%

- CAN: c.71% reduction
- Urea + NBPT: c.83% reduction
- Urea + DCD: c.90% reduction

Adapted from Harty et al. (2016)
Spring barley: CAN N_2O loss is less than previously thought further reductions possible with urea + NBPT

Adapted from Roche et al. (in review)
Key messages

Ammonia (NH$_3$)
- NBPT is highly effective in reducing ammonia loss from urea:
 \[\text{Urea} + \text{NBPT} \approx \text{CAN} \] with very low ammonia loss

The GHG Nitrous oxide (N$_2$O)
- **Grassland**: the CAN N$_2$O EF is c. 50% higher than the default
- Urea + NBPT reduces the N$_2$O EF by c. 71% compared to CAN
- Up to c. 90% EF reduction possible with urea+NBPT+DCD
- **Spring barley**: the CAN EF is lower than the default
- Urea + NBPT gives further reductions
Thank you for your attention

Funding gratefully acknowledged from:

Department of Agriculture, Food and the Marine
&
Department of Agriculture, Environment and Rural Affairs
(DAERA E&I, Project 13/4/06)

We also thank Koch Agronomic Services for the supply of fertiliser products

With thanks to field, laboratory and farm staff at AFBI and Teagasc

www.agri-i.ie
References

