- &-

Ballance Agri-Nutrients Our GHG and water quality challenge

Warwick Catto June 2016

- GHG
- Priority issue of water quality
- Fertiliser approach

- Green house gases
 - NZ economy policy setting all sectors all gases
 - 48% of NZ emission from agriculture
 - Emission trading scheme linked internationally
 - Emission targets 2020 -5% 2030 -11% (all below 1990 levels)
 - Farm biological emissions exempt incur indirect costs from energy
 - Emission factors (EF₁)
 - 0.48% urea fertiliser (was 1%)
 - 1% farm dairy effluent and urine
 - 0.25% for dung
 - Point of obligation at sector rather than farm level

Externalities impacting fertiliser

- Ammonia
 - No limits but economic loss of N (\$30m)
- Water quality limit is the primary driver of policy, industry and farmer responses
 - N, P, sediment, bacteria
 - Maori have strong views on water quality (co-governance)
 - Debate as to who owns water
 - Contact versus swimmable national standards
- Policy response philosophy (RMA)
 - if we regulate we regulate on effects not inputs

Life cycle of NZ cheese delivered to the UK

Future Drivers

Fertiliser industry strategies

- Nitrification Inhibitors
 - DCD widely tested and proven efficacy (urine and urea)
- Urease inhibitors
 - ATU Agrotain treated urea active NBPT
 - Over 48% of Ballance urea sales are SustaiN (ATU)
 - 45% reduction in ammonia emissions (250ppm NBPT)
- Dairy farm effluent not dosed with acid, Agrotain or DCD
- N fertiliser strategies to target animal intake i.e. impact of urine N load
 - Luxury uptake of N
 - Right rate, timing, form, placement

Fertiliser industry strategies continued

- Example of rapid adoption SustaiN (Agrotain Treated Urea)
 - Science based product
 - Simple messaging re ammonia loss (10mls within 8 hours)
 - Ease of use and ease of mind (addressed issue of when is right time)
 - Positive cost benefit
- Challenges with a right place right rate strategy
 - Objective assessment tool lacking
 - Fertiliser spreader calibration poor for varying rates
 - Lost N is an insignificant fertiliser cost
 - Decision support tools and automation
 - E.g. Spreadsmart aircraft, N Guru

SustaiN (Agrotain Treated urea)

 Independent trials funded by Ballance average 45% reduction in ammonia loss, relative to urea (Saggar et al., 2013)

11

Detailed soil survey

	Range	Averag
Olsen P	13 - 74	42
PR	9 - 70	29
Soil N	0.45 - 1.14	0.7
QTK	5 - 22	11
рН	5.2 - 6.7	6
TS	669 - 1900	1006
QTCa	6 - 20	13
QTMg	22 - 68	42

Some factors influencing N leaching

Animal species

Some factors influencing N leaching Winter Management

Bundling the knowledge in OVERSEER®

- Nutrient budgeting tool
 - Tracks nutrient flows around the farm (N, P, K, S, Ca, Mg, Na)
 - Within the farm system and in and out of the farm system
 - What if scenarios
 - Nutrient loss allocation
 - Estimates off-farm losses:
 - N and P leaching/run-off
 - Greenhouse gas emissions

MitAgator – a tool to generate Risk Maps Identification of CSA's and differential mitigation treatments

<complex-block>

Questions?

