

Stakeholder Meeting, Dublin, 10 June 2016

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

Gaseous nitrogen emissions from grazed grassland

Rachael Carolan, Karen L. McGeough, Catherine J. Watson Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, N. Ireland

> Dominika J. Krol, Eddy Minet, Patrick J. Forrestal, Gary J. Lanigan, Karl G. Richards

Teagasc, Johnstown Castle Environment Research Centre, Wexford, Ireland

Forrestal P.J

N₂O Measurements

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

- 3 sites: Hillsborough (HB), Johnstown Castle (JC), Moorepark (MP)
- 3 seasons: Spring, Summer, Autumn
- 4 treatments: Control, Urine, Dung, Art. Urine

NH₃ Measurements

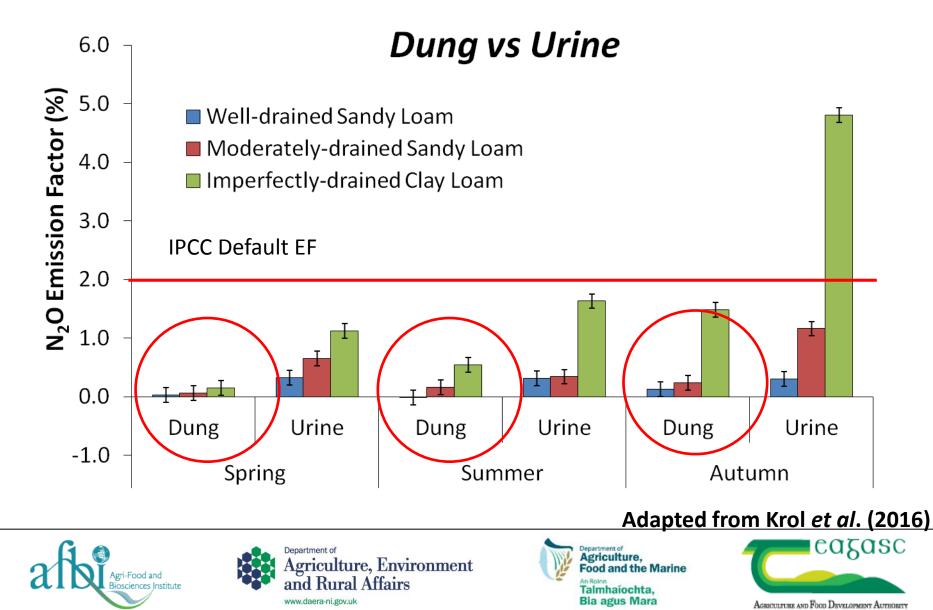
- 1 site: Johnstown Castle (JC)
- 3 seasons: Spring, Summer, Autumn
- 2 treatments: Urine & Dung

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

N₂O Results

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

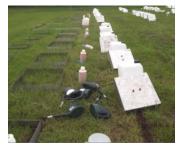
Urine vs Synthetic Urine 6.0 **N₂O Emission Factor (%)** 3.0 1.0 1.0 Well-drained Sandy Loam Moderately-drained Sandy Loam Imperfectly-drained Clay Loam **IPCC Default EF** Ŧ 0.0 Synthetic Synthetic Urine Urine Synthetic Urine Urine Urine Jrine Spring Summer Autumn Adapted from Krol et al. (2016) eazasc Department of Department of Agriculture, Food and the Marine griculture, Environment and Rural Affairs Talmhaíochta, **Bia agus Mara**


www.daera-ni.gov.uk

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

N₂O Results

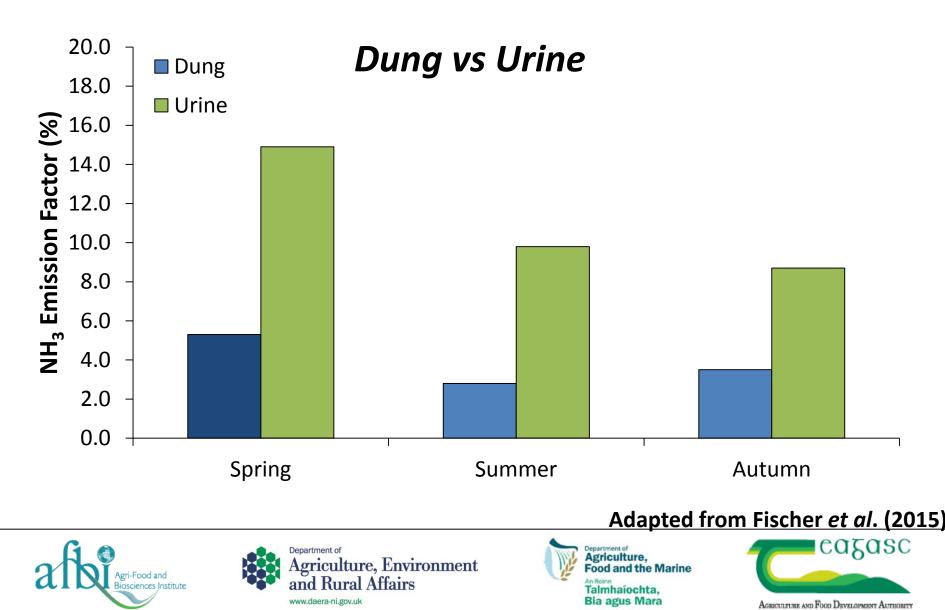
Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen



N₂O Summary

From Krol et al. (2016)

- N₂O emissions from urine and dung driven by rainfall, temperature and soil moisture deficit levels
- EFs varied seasonally and were dependent on soil type
- Cumulative N_2O emissions were significantly larger from urine treatments at all sites, with rapid emissions
- Average emission factors (EFs) were considerably lower than IPCC default:
 - Urine: <u>1.18 %</u>
 - Dung: 0.31 %



NH₃ Results

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

NH₃ Summary

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

From Fischer et al. (2015)

- EFs from urine significantly higher than dung in each season
- Average NH₃ emission factors (EFs) were:
 - Urine: <u>11.1 %</u>
 - Dung: <u>3.9 %</u>

Key Messages

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

Country Specific EFs

Results support:

- Lowering N₂O EF for grazing returns from default 2 %
- Disaggregation of N₂O EFs by excreta type

Grazing Management

Refinement of grazing management strategies to reduce N_2O EFs, particularly in wetter soils

Sustainable Nitrogen Fertiliser Use & Disaggregated Emissions of Nitrogen

Thank you for your attention

Funding gratefully acknowledged from:

Department of Agriculture, Food and the Marine (Grants: RSF 10-/RD/SC/716, 'AGRI-I' & RSF 11S138, 'SUDEN') & Department of Agriculture, Environment and Rural Affairs (DAERA E&I, Project 13/4/06)

With thanks to field, laboratory and farm staff at AFBI and Teagasc

www.agri-i.ie

References

- Krol, D.J., R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan and K.G. Richards. 2016. Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils. Science of the Total Environment *in press*.
- Fischer, K., Burchill, W., Lanigan, G.J., Kaupenjohann, M., Chambers, B., Richards, K.G. and Forrestal, P.J. 2016.
 Ammonia emissions from cattle dung, urine and urine with dicyandiamide. Soil Use and Management. 32: 83-91